FocoosModel
ExportableModel
#
Bases: Module
A wrapper class for making models exportable to different formats.
This class wraps a BaseModelNN model to make it compatible with export formats like ONNX and TorchScript by handling the output formatting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
BaseModelNN
|
The base model to wrap for export. |
required |
device
|
The device to move the model to. Defaults to "cuda". |
'cuda'
|
Source code in focoos/models/focoos_model.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
__init__(model, device='cuda')
#
Initialize the ExportableModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
BaseModelNN
|
The base model to wrap for export. |
required |
device
|
The device to move the model to. Defaults to "cuda". |
'cuda'
|
Source code in focoos/models/focoos_model.py
48 49 50 51 52 53 54 55 56 |
|
forward(x)
#
Forward pass through the wrapped model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Input tensor to pass through the model. |
required |
Returns:
Type | Description |
---|---|
Model output converted to tuple format for export compatibility. |
Source code in focoos/models/focoos_model.py
58 59 60 61 62 63 64 65 66 67 |
|
FocoosModel
#
Main model class for Focoos computer vision models.
This class provides a high-level interface for training, testing, exporting, and running inference with Focoos models. It handles model configuration, weight loading, preprocessing, and postprocessing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
BaseModelNN
|
The underlying neural network model. |
required |
model_info
|
ModelInfo
|
Metadata and configuration information for the model. |
required |
Source code in focoos/models/focoos_model.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
|
classes
property
#
Get the class names the model can predict.
Returns:
Type | Description |
---|---|
List of class names that the model was trained to recognize. |
config
property
#
Get the model configuration.
Returns:
Type | Description |
---|---|
dict
|
Dictionary containing the model configuration parameters. |
device
property
#
Get the device where the model is located.
Returns:
Type | Description |
---|---|
The device (CPU or CUDA) where the model is currently located. |
resolution
property
#
Get the input resolution of the model.
Returns:
Type | Description |
---|---|
The input image resolution expected by the model. |
task
property
#
Get the computer vision task type.
Returns:
Type | Description |
---|---|
The type of computer vision task (e.g., detection, classification). |
__call__(inputs, **kwargs)
#
Run inference on input images.
This method performs end-to-end inference including preprocessing, model forward pass, and postprocessing to return detections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Union[Tensor, ndarray, Image, list[Image], list[ndarray], list[Tensor]]
|
Input images in various formats (PIL, numpy, torch tensor, or lists). |
required |
**kwargs
|
Additional arguments passed to postprocessing. |
{}
|
Returns:
Type | Description |
---|---|
FocoosDetections
|
FocoosDetections containing the detection results. |
Source code in focoos/models/focoos_model.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
|
__init__(model, model_info)
#
Initialize the FocoosModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
BaseModelNN
|
The underlying neural network model. |
required |
model_info
|
ModelInfo
|
Metadata and configuration information for the model. |
required |
Source code in focoos/models/focoos_model.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
__repr__()
#
Return detailed string representation of the model.
Returns:
Type | Description |
---|---|
String containing model name and family. |
Source code in focoos/models/focoos_model.py
105 106 107 108 109 110 111 |
|
__str__()
#
Return string representation of the model.
Returns:
Type | Description |
---|---|
String containing model name and family. |
Source code in focoos/models/focoos_model.py
97 98 99 100 101 102 103 |
|
benchmark(iterations=50, size=None, device='cuda')
#
Benchmark the model's inference performance.
This method measures the raw model inference latency without preprocessing and postprocessing overhead.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iterations
|
int
|
Number of iterations to run for benchmarking. |
50
|
size
|
Optional[Union[int, Tuple[int, int]]]
|
Input image size. If None, uses model's default size. |
None
|
device
|
Literal['cuda', 'cpu']
|
Device to run benchmarking on ("cuda" or "cpu"). |
'cuda'
|
Returns:
Type | Description |
---|---|
LatencyMetrics
|
LatencyMetrics containing performance statistics. |
Source code in focoos/models/focoos_model.py
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
end2end_benchmark(iterations=50, size=None, device='cuda')
#
Benchmark the complete end-to-end inference pipeline.
This method measures the full inference latency including preprocessing, model forward pass, and postprocessing steps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iterations
|
int
|
Number of iterations to run for benchmarking. |
50
|
size
|
Optional[int]
|
Input image size. If None, uses model's default size. |
None
|
device
|
Literal['cuda', 'cpu']
|
Device to run benchmarking on ("cuda" or "cpu"). |
'cuda'
|
Returns:
Type | Description |
---|---|
LatencyMetrics
|
LatencyMetrics containing end-to-end performance statistics. |
Source code in focoos/models/focoos_model.py
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
|
export(runtime_type=RuntimeType.TORCHSCRIPT_32, onnx_opset=17, out_dir=None, device='cuda', overwrite=False, image_size=None)
#
Export the model to different runtime formats.
This method exports the model to formats like ONNX or TorchScript for deployment and inference optimization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
runtime_type
|
RuntimeType
|
Target runtime format for export. |
TORCHSCRIPT_32
|
onnx_opset
|
int
|
ONNX opset version to use for ONNX export. |
17
|
out_dir
|
Optional[str]
|
Output directory for exported model. If None, uses default location. |
None
|
device
|
Literal['cuda', 'cpu']
|
Device to use for export ("cuda" or "cpu"). |
'cuda'
|
overwrite
|
bool
|
Whether to overwrite existing exported model files. |
False
|
image_size
|
Optional[int]
|
Custom image size for export. If None, uses model's default size. |
None
|
Returns:
Type | Description |
---|---|
InferModel
|
InferModel instance for the exported model. |
Raises:
Type | Description |
---|---|
ValueError
|
If unsupported PyTorch version or export format. |
Source code in focoos/models/focoos_model.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
|
test(args, data_test)
#
Test the model on the provided test dataset.
This method evaluates the model performance on a test dataset, supporting both single-GPU and multi-GPU testing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args
|
TrainerArgs
|
Test configuration arguments. |
required |
data_test
|
MapDataset
|
Test dataset for model evaluation. |
required |
Raises:
Type | Description |
---|---|
AssertionError
|
If task mismatch between model and dataset. |
AssertionError
|
If num_gpus is 0 (GPU testing is required). |
Source code in focoos/models/focoos_model.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
|
train(args, data_train, data_val, hub=None)
#
Train the model on the provided datasets.
This method handles both single-GPU and multi-GPU distributed training. It sets up the model for training, optionally syncs with Focoos Hub, and manages the training process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args
|
TrainerArgs
|
Training configuration and hyperparameters. |
required |
data_train
|
MapDataset
|
Training dataset containing images and annotations. |
required |
data_val
|
MapDataset
|
Validation dataset for model evaluation. |
required |
hub
|
Optional[FocoosHUB]
|
Optional Focoos Hub instance for model syncing. |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
If task mismatch between model and dataset. |
AssertionError
|
If number of classes mismatch between model and dataset. |
AssertionError
|
If num_gpus is 0 (GPU training is required). |
FileNotFoundError
|
If training artifacts are not found after completion. |
Source code in focoos/models/focoos_model.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|