Runtime#
Runtime Module for the models
This module provides the necessary functionality for loading, preprocessing, running inference, and benchmarking ONNX and TorchScript models using different execution providers such as CUDA, TensorRT, and CPU. It includes utility functions for image preprocessing, postprocessing, and interfacing with the ONNXRuntime and TorchScript libraries.
Functions:
Name | Description |
---|---|
det_postprocess |
Postprocesses detection model outputs into sv.Detections. |
semseg_postprocess |
Postprocesses semantic segmentation model outputs into sv.Detections. |
load_runtime |
Returns an ONNXRuntime or TorchscriptRuntime instance configured for the given runtime type. |
Classes:
Name | Description |
---|---|
RuntimeTypes |
Enum for the different runtime types. |
ONNXRuntime |
A class that interfaces with ONNX Runtime for model inference. |
TorchscriptRuntime |
A class that interfaces with TorchScript for model inference. |
BaseRuntime
#
Abstract base class for runtime implementations.
This class defines the interface that all runtime implementations must follow. It provides methods for model initialization, inference, and performance benchmarking.
Attributes:
Name | Type | Description |
---|---|---|
model_path |
str
|
Path to the model file. |
opts |
Any
|
Runtime-specific options. |
model_metadata |
ModelMetadata
|
Metadata about the model. |
Source code in focoos/runtime.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
__call__(im)
abstractmethod
#
Run inference on the input image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im
|
ndarray
|
Input image as a numpy array. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Model output as a numpy array. |
Source code in focoos/runtime.py
82 83 84 85 86 87 88 89 90 91 92 93 |
|
__init__(model_path, opts, model_metadata)
#
Initialize the runtime with model path, options and metadata.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_path
|
str
|
Path to the model file. |
required |
opts
|
Any
|
Runtime-specific configuration options. |
required |
model_metadata
|
ModelMetadata
|
Metadata about the model. |
required |
Source code in focoos/runtime.py
71 72 73 74 75 76 77 78 79 80 |
|
benchmark(iterations=20, size=640)
abstractmethod
#
Benchmark the model performance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iterations
|
int
|
Number of inference iterations to run. Defaults to 20. |
20
|
size
|
int
|
Input image size for benchmarking. Defaults to 640. |
640
|
Returns:
Name | Type | Description |
---|---|---|
LatencyMetrics |
LatencyMetrics
|
Performance metrics including mean, median, and percentile latencies. |
Source code in focoos/runtime.py
95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
ONNXRuntime
#
Bases: BaseRuntime
ONNX Runtime wrapper for model inference with different execution providers.
This class implements the BaseRuntime interface for ONNX models, supporting various execution providers like CUDA, TensorRT, OpenVINO, and CoreML. It handles model initialization, provider configuration, warmup, inference, and performance benchmarking.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
Name of the model derived from the model path. |
opts |
OnnxRuntimeOpts
|
Configuration options for the ONNX runtime. |
model_metadata |
ModelMetadata
|
Metadata about the model. |
ort_sess |
InferenceSession
|
ONNX Runtime inference session. |
active_providers |
list
|
List of active execution providers. |
dtype |
dtype
|
Input data type for the model. |
Source code in focoos/runtime.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|
__call__(im)
#
Run inference on the input image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im
|
ndarray
|
Input image as a numpy array. |
required |
Returns:
Type | Description |
---|---|
list[ndarray]
|
list[np.ndarray]: Model outputs as a list of numpy arrays. |
Source code in focoos/runtime.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
benchmark(iterations=20, size=640)
#
Benchmark the model performance.
Runs multiple inference iterations and measures execution time to calculate performance metrics like FPS, mean latency, and other statistics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iterations
|
int
|
Number of inference iterations to run. Defaults to 20. |
20
|
size
|
int or tuple
|
Input image size for benchmarking. Defaults to 640. |
640
|
Returns:
Name | Type | Description |
---|---|---|
LatencyMetrics |
LatencyMetrics
|
Performance metrics including FPS, mean, min, max, and std latencies. |
Source code in focoos/runtime.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|
TorchscriptRuntime
#
Bases: BaseRuntime
TorchScript Runtime wrapper for model inference.
This class implements the BaseRuntime interface for TorchScript models, supporting both CPU and CUDA devices. It handles model initialization, device placement, warmup, inference, and performance benchmarking.
Attributes:
Name | Type | Description |
---|---|---|
device |
device
|
Device to run inference on (CPU or CUDA). |
opts |
TorchscriptRuntimeOpts
|
Configuration options for the TorchScript runtime. |
model |
ScriptModule
|
Loaded TorchScript model. |
Source code in focoos/runtime.py
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|
__call__(im)
#
Run inference on the input image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im
|
ndarray
|
Input image as a numpy array. |
required |
Returns:
Type | Description |
---|---|
list[ndarray]
|
list[np.ndarray]: Model outputs as a list of numpy arrays. |
Source code in focoos/runtime.py
329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
benchmark(iterations=20, size=640)
#
Benchmark the model performance.
Runs multiple inference iterations and measures execution time to calculate performance metrics like FPS, mean latency, and other statistics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iterations
|
int
|
Number of inference iterations to run. Defaults to 20. |
20
|
size
|
int or tuple
|
Input image size for benchmarking. Defaults to 640. |
640
|
Returns:
Name | Type | Description |
---|---|---|
LatencyMetrics |
LatencyMetrics
|
Performance metrics including FPS, mean, min, max, and std latencies. |
Source code in focoos/runtime.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|
load_runtime(runtime_type, model_path, model_metadata, warmup_iter=0)
#
Creates and returns a runtime instance based on the specified runtime type. Supports both ONNX and TorchScript runtimes with various execution providers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
runtime_type
|
RuntimeTypes
|
The type of runtime to use. Can be one of: - ONNX_CUDA32: ONNX runtime with CUDA FP32 - ONNX_TRT32: ONNX runtime with TensorRT FP32 - ONNX_TRT16: ONNX runtime with TensorRT FP16 - ONNX_CPU: ONNX runtime with CPU - ONNX_COREML: ONNX runtime with CoreML - TORCHSCRIPT_32: TorchScript runtime with FP32 |
required |
model_path
|
str
|
Path to the model file (.onnx or .pt) |
required |
model_metadata
|
ModelMetadata
|
Model metadata containing task type, classes etc. |
required |
warmup_iter
|
int
|
Number of warmup iterations before inference. Defaults to 0. |
0
|
Returns:
Name | Type | Description |
---|---|---|
BaseRuntime |
BaseRuntime
|
A configured runtime instance (ONNXRuntime or TorchscriptRuntime) |
Raises:
Type | Description |
---|---|
ImportError
|
If required dependencies (torch/onnxruntime) are not installed |
Source code in focoos/runtime.py
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
|