evaluation
ClassificationEvaluator
#
Bases: DatasetEvaluator
Evaluator for classification tasks with comprehensive metrics computation.
This evaluator computes various classification metrics including accuracy, precision, recall, and F1 score both per-class and as macro/weighted averages. It supports distributed evaluation across multiple processes.
Attributes:
Name | Type | Description |
---|---|---|
dataset_dict |
DictDataset
|
Dataset containing ground truth annotations. |
metadata |
Metadata from the dataset containing class information. |
|
num_classes |
int
|
Number of classes in the classification task. |
class_names |
List[str]
|
Names of the classes. |
Source code in focoos/trainer/evaluation/classification_evaluation.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
__init__(dataset_dict, distributed=True)
#
Initialize the ClassificationEvaluator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_dict
|
DictDataset
|
Dataset in DictDataset format containing the ground truth annotations. |
required |
distributed
|
bool
|
If True, evaluation will be distributed across multiple processes. Defaults to True. |
True
|
Source code in focoos/trainer/evaluation/classification_evaluation.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
evaluate()
#
Evaluate classification metrics on accumulated predictions.
Computes comprehensive classification metrics including accuracy, per-class precision/recall/F1, and macro/weighted averages.
Returns:
Name | Type | Description |
---|---|---|
OrderedDict |
Dictionary containing evaluation metrics with the following keys: - 'Accuracy': Overall classification accuracy (%) - 'Macro-Precision': Macro-averaged precision (%) - 'Macro-Recall': Macro-averaged recall (%) - 'Macro-F1': Macro-averaged F1 score (%) - 'Weighted-Precision': Weighted precision (%) - 'Weighted-Recall': Weighted recall (%) - 'Weighted-F1': Weighted F1 score (%) - 'Precision-{class_name}': Per-class precision (%) - 'Recall-{class_name}': Per-class recall (%) - 'F1-{class_name}': Per-class F1 score (%) |
Note
- In distributed mode, only the main process returns results
- All metrics are expressed as percentages
- Returns empty dict if no predictions are available
- Results are wrapped in 'classification' key for trainer compatibility
Source code in focoos/trainer/evaluation/classification_evaluation.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
from_datasetdict(dataset_dict, **kwargs)
classmethod
#
Create ClassificationEvaluator instance from a dataset dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_dict
|
Dataset dictionary containing the data and metadata. |
required | |
**kwargs
|
Additional keyword arguments passed to the constructor. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
ClassificationEvaluator |
New instance of the evaluator. |
Source code in focoos/trainer/evaluation/classification_evaluation.py
53 54 55 56 57 58 59 60 61 62 63 64 |
|
process(inputs, outputs)
#
Process a batch of inputs and outputs for evaluation.
This method extracts predictions and ground truth labels from the provided inputs and outputs, then stores them for later evaluation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
List[ClassificationDatasetDict]
|
List of input dictionaries, each containing ground truth information. Expected to have 'label' field or 'annotations' with category_id. |
required |
outputs
|
List[ClassificationModelOutput]
|
List of model outputs, each containing 'logits' field with predicted class logits or ClassificationModelOutput instances. |
required |
Note
- Ground truth labels are extracted from input['label'] or input['annotations'][0]['category_id']
- Predictions are extracted from output['logits'] or output.logits
- Items with missing labels or logits are skipped with warnings
Source code in focoos/trainer/evaluation/classification_evaluation.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
reset()
#
Clear stored predictions and targets.
This method resets the internal state of the evaluator by clearing all accumulated predictions and ground truth targets.
Source code in focoos/trainer/evaluation/classification_evaluation.py
66 67 68 69 70 71 72 73 |
|