Ports
ApiKey
#
Bases: FocoosBaseModel
API key for authentication.
Source code in focoos/ports.py
650 651 652 653 |
|
DatasetLayout
#
Bases: str
, Enum
Supported dataset formats in Focoos.
Values
- ROBOFLOW_COCO: (Detection,Instance Segmentation)
- ROBOFLOW_SEG: (Semantic Segmentation)
- SUPERVISELY: (Semantic Segmentation)
Example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
Source code in focoos/ports.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
DatasetPreview
#
Bases: FocoosBaseModel
Preview information for a Focoos dataset.
This class provides metadata about a dataset in the Focoos platform, including its identification, task type, and layout format.
Attributes:
Name | Type | Description |
---|---|---|
ref |
str
|
Unique reference ID for the dataset. |
name |
str
|
Human-readable name of the dataset. |
task |
FocoosTask
|
The computer vision task this dataset is designed for. |
layout |
DatasetLayout
|
The structural format of the dataset (e.g., ROBOFLOW_COCO, ROBOFLOW_SEG, SUPERVISELY). |
description |
Optional[str]
|
Optional description of the dataset's purpose or contents. |
spec |
Optional[DatasetSpec]
|
Detailed specifications about the dataset's composition and size. |
Source code in focoos/ports.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
|
DatasetSpec
#
Bases: FocoosBaseModel
Specification details for a dataset in the Focoos platform.
This class provides information about the dataset's size and composition, including the number of samples in training and validation sets and the total size.
Attributes:
Name | Type | Description |
---|---|---|
train_length |
int
|
Number of samples in the training set. |
valid_length |
int
|
Number of samples in the validation set. |
size_mb |
float
|
Total size of the dataset in megabytes. |
Source code in focoos/ports.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
|
FocoosDet
#
Bases: FocoosBaseModel
Single detection result from a model.
This class represents a single detection or segmentation result from a Focoos model. It contains information about the detected object including its position, class, confidence score, and optional segmentation mask.
Attributes:
Name | Type | Description |
---|---|---|
bbox |
Optional[list[int]]
|
Bounding box coordinates in [x1, y1, x2, y2] format, where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner. |
conf |
Optional[float]
|
Confidence score of the detection, ranging from 0 to 1. |
cls_id |
Optional[int]
|
Class ID of the detected object, corresponding to the index in the model's class list. |
label |
Optional[str]
|
Human-readable label of the detected object. |
mask |
Optional[str]
|
Base64-encoded PNG image representing the segmentation mask. Note that the mask is cropped to the bounding box coordinates and does not have the same shape as the input image. |
Note
The mask is only present if the model is an instance segmentation or semantic segmentation model. The mask is a base64 encoded string having origin in the top left corner of bbox and the same width and height of the bbox.
Source code in focoos/ports.py
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
|
FocoosDetections
#
Bases: FocoosBaseModel
Collection of detection results from a model.
This class represents a collection of detection or segmentation results from a Focoos model. It contains a list of individual detections and optional latency information.
Attributes:
Name | Type | Description |
---|---|---|
detections |
list[FocoosDet]
|
List of detection results, where each detection contains information about a detected object including its position, class, confidence score, and optional segmentation mask. |
latency |
Optional[dict]
|
Dictionary containing latency information for the inference process. Typically includes keys like 'inference', 'preprocess', and 'postprocess' with values representing the time taken in seconds for each step. |
Source code in focoos/ports.py
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
|
FocoosTask
#
Bases: str
, Enum
Types of computer vision tasks supported by Focoos.
Values
- DETECTION: Object detection
- SEMSEG: Semantic segmentation
- INSTANCE_SEGMENTATION: Instance segmentation
Source code in focoos/ports.py
118 119 120 121 122 123 124 125 126 127 128 129 |
|
GPUInfo
#
Bases: FocoosBaseModel
Information about a GPU device.
Source code in focoos/ports.py
591 592 593 594 595 596 597 598 599 |
|
Hyperparameters
#
Bases: FocoosBaseModel
Model training hyperparameters configuration.
Attributes:
Name | Type | Description |
---|---|---|
batch_size |
int
|
Number of images processed in each training iteration. Range: 1-32. Larger batch sizes require more GPU memory but can speed up training. |
eval_period |
int
|
Number of iterations between model evaluations. Range: 50-2000. Controls how frequently validation is performed during training. |
max_iters |
int
|
Maximum number of training iterations. Range: 100-100,000. Total number of times the model will see batches of training data. |
resolution |
int
|
Input image resolution for the model. Range: 128-6400 pixels. Higher resolutions can improve accuracy but require more compute. |
wandb_project |
Optional[str]
|
Weights & Biases project name in format "ORG_ID/PROJECT_NAME". Used for experiment tracking and visualization. |
wandb_apikey |
Optional[str]
|
API key for Weights & Biases integration. Required if using wandb_project. |
learning_rate |
float
|
Step size for model weight updates. Range: 0.00001-0.1. Controls how quickly the model learns. Too high can cause instability. |
decoder_multiplier |
float
|
Multiplier for decoder learning rate. Allows different learning rates for decoder vs backbone. |
backbone_multiplier |
float
|
Multiplier for backbone learning rate. Default 0.1 means backbone learns 10x slower than decoder. |
amp_enabled |
bool
|
Whether to use automatic mixed precision training. Can speed up training and reduce memory usage with minimal accuracy impact. |
weight_decay |
float
|
L2 regularization factor to prevent overfitting. Higher values = stronger regularization. |
ema_enabled |
bool
|
Whether to use Exponential Moving Average of model weights. Can improve model stability and final performance. |
ema_decay |
float
|
Decay rate for EMA. Higher = slower but more stable updates. Only used if ema_enabled=True. |
ema_warmup |
int
|
Number of iterations before starting EMA. Only used if ema_enabled=True. |
freeze_bn |
bool
|
Whether to freeze all batch normalization layers. Useful for fine-tuning with small batch sizes. |
freeze_bn_bkb |
bool
|
Whether to freeze backbone batch normalization layers. Default True to preserve pretrained backbone statistics. |
optimizer |
str
|
Optimization algorithm. Options: "ADAMW", "SGD", "RMSPROP". ADAMW generally works best for vision tasks. |
scheduler |
str
|
Learning rate schedule. Options: "POLY", "FIXED", "COSINE", "MULTISTEP". Controls how learning rate changes during training. |
early_stop |
bool
|
Whether to stop training early if validation metrics plateau. Can prevent overfitting and save compute time. |
patience |
int
|
Number of evaluations to wait for improvement before early stopping. Only used if early_stop=True. |
Source code in focoos/ports.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
LatencyMetrics
dataclass
#
Performance metrics for model inference.
This class provides performance metrics for model inference, including frames per second (FPS), engine used, minimum latency, maximum latency, mean latency, standard deviation of latency, input image size, and device type.
Attributes:
Name | Type | Description |
---|---|---|
fps |
int
|
Frames per second (FPS) of the inference process. |
engine |
str
|
The inference engine used (e.g., "onnx", "torchscript"). |
min |
float
|
Minimum latency in milliseconds. |
max |
float
|
Maximum latency in milliseconds. |
mean |
float
|
Mean latency in milliseconds. |
std |
float
|
Standard deviation of latency in milliseconds. |
im_size |
int
|
Input image size. |
device |
str
|
Device type. |
Source code in focoos/ports.py
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
|
Metrics
#
Bases: FocoosBaseModel
Collection of training and inference metrics.
Source code in focoos/ports.py
714 715 716 717 718 719 720 721 722 723 724 |
|
ModelFormat
#
Bases: str
, Enum
Supported model formats.
Values
- ONNX: ONNX format
- TORCHSCRIPT: TorchScript format
Source code in focoos/ports.py
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
|
ModelMetadata
#
Bases: FocoosBaseModel
Complete metadata for a Focoos model.
This class contains comprehensive information about a model in the Focoos platform, including its identification, configuration, performance metrics, and training details.
Attributes:
Name | Type | Description |
---|---|---|
ref |
str
|
Unique reference ID for the model. |
name |
str
|
Human-readable name of the model. |
description |
Optional[str]
|
Optional description of the model's purpose or capabilities. |
owner_ref |
str
|
Reference ID of the model owner. |
focoos_model |
str
|
The base model architecture used. |
task |
FocoosTask
|
The task type the model is designed for (e.g., DETECTION, SEMSEG). |
created_at |
datetime
|
Timestamp when the model was created. |
updated_at |
datetime
|
Timestamp when the model was last updated. |
status |
ModelStatus
|
Current status of the model (e.g., TRAINING, DEPLOYED). |
metrics |
Optional[dict]
|
Performance metrics of the model (e.g., mAP, accuracy). |
latencies |
Optional[list[dict]]
|
Inference latency measurements across different configurations. |
classes |
Optional[list[str]]
|
List of class names the model can detect or segment. |
im_size |
Optional[int]
|
Input image size the model expects. |
hyperparameters |
Optional[Hyperparameters]
|
Training hyperparameters used. |
training_info |
Optional[TrainingInfo]
|
Information about the training process. |
location |
Optional[str]
|
Storage location of the model. |
dataset |
Optional[DatasetPreview]
|
Information about the dataset used for training. |
Source code in focoos/ports.py
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|
ModelNotFound
#
Bases: Exception
Exception raised when a requested model is not found.
Source code in focoos/ports.py
706 707 708 709 710 711 |
|
ModelPreview
#
Bases: FocoosBaseModel
Preview information for a Focoos model.
This class provides a lightweight preview of model information in the Focoos platform, containing essential details like reference ID, name, task type, and status.
Attributes:
Name | Type | Description |
---|---|---|
ref |
str
|
Unique reference ID for the model. |
name |
str
|
Human-readable name of the model. |
task |
FocoosTask
|
The computer vision task this model is designed for. |
description |
Optional[str]
|
Optional description of the model's purpose or capabilities. |
status |
ModelStatus
|
Current status of the model (e.g., training, ready, failed). |
focoos_model |
str
|
The base model architecture identifier. |
Source code in focoos/ports.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
ModelStatus
#
Bases: str
, Enum
Status of a Focoos model during its lifecycle.
Values
- CREATED: Model has been created
- TRAINING_STARTING: Training is about to start
- TRAINING_RUNNING: Training is in progress
- TRAINING_ERROR: Training encountered an error
- TRAINING_COMPLETED: Training finished successfully
- TRAINING_STOPPED: Training was stopped
- DEPLOYED: Model is deployed
- DEPLOY_ERROR: Deployment encountered an error
Example
1 2 3 4 5 6 7 8 9 10 11 |
|
Source code in focoos/ports.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
OnnxRuntimeOpts
dataclass
#
ONNX runtime configuration options.
This class provides configuration options for the ONNX runtime used for model inference.
Attributes:
Name | Type | Description |
---|---|---|
fp16 |
Optional[bool]
|
Enable FP16 precision. Default is False. |
cuda |
Optional[bool]
|
Enable CUDA acceleration for GPU inference. Default is False. |
vino |
Optional[bool]
|
Enable OpenVINO acceleration for Intel hardware. Default is False. |
verbose |
Optional[bool]
|
Enable verbose logging during inference. Default is False. |
trt |
Optional[bool]
|
Enable TensorRT acceleration for NVIDIA GPUs. Default is False. |
coreml |
Optional[bool]
|
Enable CoreML acceleration for Apple hardware. Default is False. |
warmup_iter |
int
|
Number of warmup iterations to run before benchmarking. Default is 0. |
Source code in focoos/ports.py
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
|
Quotas
#
Bases: FocoosBaseModel
Usage quotas and limits for a user account.
Attributes:
Name | Type | Description |
---|---|---|
total_inferences |
int
|
Total number of inferences allowed. |
max_inferences |
int
|
Maximum number of inferences allowed. |
used_storage_gb |
float
|
Used storage in gigabytes. |
max_storage_gb |
float
|
Maximum storage in gigabytes. |
active_training_jobs |
list[str]
|
List of active training job IDs. |
max_active_training_jobs |
int
|
Maximum number of active training jobs allowed. |
Source code in focoos/ports.py
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
|
RuntimeTypes
#
Bases: str
, Enum
Available runtime configurations for model inference.
Values
- ONNX_CUDA32: ONNX with CUDA FP32
- ONNX_TRT32: ONNX with TensorRT FP32
- ONNX_TRT16: ONNX with TensorRT FP16
- ONNX_CPU: ONNX on CPU
- ONNX_COREML: ONNX with CoreML
- TORCHSCRIPT_32: TorchScript FP32
Source code in focoos/ports.py
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
|
SystemInfo
#
Bases: FocoosBaseModel
System information including hardware and software details.
Source code in focoos/ports.py
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
|
TorchscriptRuntimeOpts
dataclass
#
TorchScript runtime configuration options.
This class provides configuration options for the TorchScript runtime used for model inference.
Attributes:
Name | Type | Description |
---|---|---|
warmup_iter |
int
|
Number of warmup iterations to run before benchmarking. Default is 0. |
optimize_for_inference |
bool
|
Enable inference optimizations. Default is True. |
set_fusion_strategy |
bool
|
Enable operator fusion. Default is True. |
Source code in focoos/ports.py
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
|
TrainInstance
#
Bases: str
, Enum
Available training instance types.
Values
- ML_G4DN_XLARGE: ml.g4dn.xlarge instance, Nvidia Tesla T4, 16GB RAM, 4vCPU
Source code in focoos/ports.py
396 397 398 399 400 401 402 403 |
|
TrainingInfo
#
Bases: FocoosBaseModel
Information about a model's training process.
This class contains details about the training job configuration, status, and timing.
Attributes:
Name | Type | Description |
---|---|---|
algorithm_name |
str
|
The name of the training algorithm used. |
instance_type |
Optional[str]
|
The compute instance type used for training. |
volume_size |
Optional[int]
|
The storage volume size in GB allocated for the training job. |
max_runtime_in_seconds |
Optional[int]
|
Maximum allowed runtime for the training job in seconds. |
main_status |
Optional[str]
|
The primary status of the training job (e.g., "InProgress", "Completed"). |
secondary_status |
Optional[str]
|
Additional status information about the training job. |
failure_reason |
Optional[str]
|
Description of why the training job failed, if applicable. |
elapsed_time |
Optional[int]
|
Time elapsed since the start of the training job in seconds. |
status_transitions |
list[dict]
|
List of status change events during the training process. |
start_time |
Optional[datetime]
|
Timestamp when the training job started. |
end_time |
Optional[datetime]
|
Timestamp when the training job completed or failed. |
artifact_location |
Optional[str]
|
Storage location of the training artifacts and model outputs. |
Source code in focoos/ports.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
|
User
#
Bases: FocoosBaseModel
User account information.
This class represents a user account in the Focoos platform, containing personal information, API key, and usage quotas.
Attributes:
Name | Type | Description |
---|---|---|
email |
str
|
The user's email address. |
created_at |
datetime
|
When the user account was created. |
updated_at |
datetime
|
When the user account was last updated. |
company |
Optional[str]
|
The user's company name, if provided. |
api_key |
ApiKey
|
The API key associated with the user account. |
quotas |
Quotas
|
Usage quotas and limits for the user account. |
Source code in focoos/ports.py
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
|